Microwave basic techniques compared to its new revolutionary single reaction chamber (SRC) system

บุญศรี เอี่ยมรอด บริษัทสิทธิพรแอสโซซิเอส จำกัด 17 July 2013

Introduction of Microwave

Microwaves

Microwaves

- Microwaves are electromagnetic energy
- Microwaves frequency ranges from 300 to 300.000 MHz
- Microwaves wavelength ranges from 1 m to 1 mm
- Frequencies for industrial, medical and scientific uses are 915 MHz, 2.450 MHz (12,25 cm wavelength), 5.800 MHz and 22.125 MHz

Microwave penetration vs. frequency (water at 25°C)

Penetration depths of microwave energy of various materials at 2450MHz

Material	Temperature in °C	Penetration depth in cm
ice	-12	1100
bread	25	25
potato , raw	25	0,9
mashed potato	25	0,8
peas, carrots	25	1
meat	25	0,9 1,2
paper, cardboard	25	20 60
wood	25	8 350
hollow glas	25	35
porcelain	25	56
polyvinylchloride20	20	210
epoxy resin (Araldite Cl 501)	N- 25	4100
teflon	25	9200
quartz glas	25	

Electromagnetic Energy Frequency ranges ถบดลี่นดวามกี่ของ ดลื่นแม่เหล็กไฟฟ้า Radie Buizing Light **↑***E*,*P* and 0 10 Liquids rapidly absorb microwave energy 104 10 60 HZ MILESTONE 0 Hz Direct Current -> HELPING CHEMISTS

Microwave energy

- Microwaves are not ionizing radiations
- Microwave energy is largely below the energy necessary to

break the bonds of common organic molecules

Microwave radiation (at 2.450 MHz) quantum energy (eV) 0,0016 Chemical bond energy (eV) H-OH 5,2 CH3-CH3 3,8 Hydrogen bond (water) 0,21

Interaction of materials with microwaves

 Materials may be reflective, absorptive or transparent to microwaves

Microwave Heating Mechanism

ELPING HEMISTS

microwave heating

- 10mL of HNO₃ are heated in 6 Teflon TFM closed vessels at 600Watt for 15 minutes
- The vapor pressure generated inside the vessels increases the boiling temperature of HNO₃

Pressure and Temperature

- Pressure is the mean and temperature is the goal
- Increasing the temperature by 10°C doubles the rate of a reaction
- Rapid microwave heating and the use of closed vessel allow for reducing the sample preparation time from hours to minutes

Sample Preparation Time

Sample Preparation Quality

- No losses of volatile elements, complete recovery of Hg, Se, As etc.
- Low blanks, minimum quantities of acids are used
- No sample contamination from the environment or from other samples
- Reproducible and fully documented sample preparation procedure
- No acid fumes for improved laboratory personnel and working conditions

A microwave system is the combination of:

Milestone ETHOS One

The best choice in microwave sample preparation

MICROWAVE HARDWARE

- Highest microwave power
 - Dual 900 Watt-rated magnetrons
 - Diffuser
- Pressure-responsive door
- Door locking system
- SafeVIEW

Microwave diffuser

The diffuser homogenize the microwave field across all cavity

Microwave a diffuser

Pressure responsive door

Door locking system

Built-in digital camera

USER INTERFACE

- Touch-screen technology
- Built-in methods library
- One method fits any vessels number
- Better control of exothermal reactions
- Easy data transfer

Methods Library

EasyCONTROL software Full control of the exothermal reactions MAN when when the set

Easy data transfer

REACTION SENSORS

- Direct temperature control
- Contact-less temperature control in all vessels
 - TEMPSURE
- Direct pressure control
- Contact-less pressure control in all vessels

Direct temperature control

- Temperature sensor is continuosly controlling the temperature
- Sensor is housed in a PTFE coated ceramic thermowell

Temperature control in all vessels (TEMPSURE)

Direct pressure control

Pressure control in all vessels (QP)

Pressure control in all vessels (QP)

Pressure control in all vessels (QP)

VESSEL TECHNOLOGY

- Patented "vent-and-reseal" technology
- Highest temperature and pressure
- Highest safety standards •
- Ease of use •
- Fast cooling

Vent-and-reseal technology

Vent-and-reseal technology

Burst Disk

Microwave FLEXIBILITY

- Close vessel digestion
- Open vessel digestion
- Vacuum evaporation
- Solvent extraction
- Protein Hydrolysis
- Fusion
- Synthesis

Microwave Close Digestion

Acids Chemistry

<u>Non-oxidizing</u>

• Hydrochloric acid

• Hydrofluoric acid

- Phosphoric acid
- Diluted sulfuric acid
- Diluted perchloric acid

<u>Oxidizing</u>

- Nitric acid
- Hot concentrated perchloric acid
- Concentrated sulfuric acid
- Hydrogen peroxide

Nitric Acid

- Boiling point is 120°C at 65% concentration
- Poor oxidizing strength at concentrations less than 2 M; oxidizing strength increases with concentration and reaction temperature and pressure
- Most common acid for oxidation of organic matrices (CH₂)_X + HNO₃ → CO₂(g) + NO_X(g) + H₂O

Nitric Acid

- It dissolves most metals forming soluble nitrates, exceptions are Au and Pt (not oxidated) and Al, B, Cr, Ti and Zr (passivated)
- These metals require acid mixtures or diluted nitric acid
- Often mixed with H₂O₂, HCl and H₂SO₄
- Available in high purity for trace analysis

Hydrochloric Acid

- Boiling point of azeotropic mixture with H₂O with 20,4% HCl is 110°C
- Available with 38% concentration
- Nonoxidizing
- It dissolves salts of weak acids (carbonates, phosphates) and most metals are soluble with the exception of AgCl, HgCl and TiCl
- Excess of HCl improves the solubility of AgCl, converted into AgCl₂⁻

Hydrochloric Acid

- Strong complexing nature
- Widely used for iron-based alloys because of its ability to hold large amounts of chloro-complex in solution
- Other complexes formed are Ag (I), Au (II), Hg (II), Ga (III), TI (III), Sn (IV), Fe (II) and Fe (III)
- It does not dissolve oxides of Al, Be, Cr, Ti, Zr, Sn and Sb; sulphates of Ba and Pb, group II fluorides, SiO₂, TiO₂ and ZrO₂

Hydrochloric Acid 300 50 250 40 Temperature (°C) Dressure (bar) 200 150 100 10 50 0 0 0.00 0.05 0.10 0.15 0.20 0.25 Time (h.mm) MILESTONE ELPING HEMISTS

Hydrofluoric Acid

Digestion

- Boiling point is 108°C at 40% concentration
- Nonoxidizing, strong complexing nature
- Used in digestion of minerals, ores, soils, rocks and even botanical samples
- Major use is the decomposition of silicates

$SiO_2 + 6HF \rightarrow H_2SiF_6 + 2H_2O$

• Often used in combination with HNO₃ or HClO₄

Hydrofluoric Acid

Concentration

• Following dissolution, many analyses require removal of HF to prevent equipment damage or to resolubilize insoluble fluorides

$H_2SiF_6 \rightarrow SiF_4 + 2HF$

• Many analytes such as As, B, Se, Sb, Hg, Cr may volatilize

Hydrofluoric Acid

Complexation

- Alternative approach to remove HF from the solution, by addition of boric acid
- The following reactions take place

$H_{3}BO_{3} + 3HF \rightarrow HBF_{3}(OH) + 2H_{2}O$ $HBF_{3}(OH) + HF \rightarrow HBF_{4} + H_{2}O$

• 10-50 times excess boric acid enhances reaction rate

Hydrofluoric Acid

Sulfuric Acid

- Boiling point is 340°C at 98% concentration, exceeding max working temperature of Teflon vessels
- Careful reaction temperature monitoring is required to prevent vessel damages
- It destroys organics by dehydrating action
- Many sulfates are insoluble (Ba, Sr, Pb)

Perchloric Acid

- Boiling point is 203°C at 72% concentration
- Powerful oxidizing acid when used warm
- Hot and concentrated decomposes violently organic matter
- Nearly all perchlorates are soluble
- HCIO₄ decomposes at 245°C in microwave closed vessel with dangerous amounts of by-products and tremendous excess pressure

Perchloric Acid

Perchloric Acid

• Rule #1: do not use it

- Use only very diluted perchloric acid
- Mix it with other acids (but never with sulfuric acid)
- Never exceed 200°C
- Use it only to perform a two-step digestion
- Perchloric acid is normally not required for the closed vessel microwave digestion of organic samples

Hydrogen Peroxide

• Oxidizing agent

$2H_2O_2 \rightarrow 2H_2O + O_2$

- Added to HNO₃ it reduces nitrous vapors and it accelerates the digestion of organic samples by raising the temperature
- Typical mixture ratio is HNO₃:H₂O₂=4:1

Organic Samples

• Nitric acid is the most common oxidizing agent used to digest organic samples, according to the following reaction

$ORG + HNO_3 \rightarrow CO_2 + H_2O + NO_X$

• Metals are converted into soluble nitrates, available for analysis

Temperature

- High fat (cheese, butter, vegetable oil etc.) → 180°C
- High protein (bovine, serum, albumin)
 → 160°C
- High carbohydrates (wheat, sugar etc.)
 → 140°C
- Based on sample decomposition with HNO₃

0,5 g Olive Oil

0,5 g Milk Powder

0,5 g Noodles

Pressure

- Temperature is key
- Pressure is mean
- Microwave heating raises acid temperature and vapor pressure
- Gaseous products (CO₂ and NO_X) are formed from sample decomposition

0,1 g Milk Powder

0,25 g Milk Powder

0,5 g Milk Powder

1,0 g Milk Powder

Milk Powder

Sample weight	Set temperature	Actual temperature	Set pressure	Actual pressure
0,1 g	220∘C	220∘C	25 bar	~ 8 bar
0,25 g	220∘C	~ 200∘C	25 bar	25 bar
0,5 g	220∘C	~ 150∘C	25 bar	25 bar
1,0 g	220∘C	~ 100∘C	25 bar	Up to 48 bar
			2	HELPIN

Limitations of Pressure Control

Limitations of Pressure Control

Pressure-based Digestion Quality

- Left
 - 1,0 gram Leaves
 - <u>20 bar</u>
- Right
 - 0,25 grams Leaves
 - <u>20 bar</u>

Ethos One video

What is Next?

Current Limitations

- Digestion quality
 - Sample amount
 - Temperature and pressure
- Productivity
 - Sample throughput
 - Disposable vials
- Ease of use
 - Vessels handling
 - Methods library

UltraWAVE

The Game Changer in microwave sample preparation

Single Reaction Chamber

Single Reaction Chamber

- The microwave cavity is the reaction vessel
- 1500 Watt high microwave power
- Direct microwave coupling
- 990 mL stainless steel reaction chamber
- 900 mL sealed TFM liner inside the chamber

Operating sequence

MILESTONE L P I N G

Pressurization

- Cap for all vials
- Preventing solutions boiling
- Preventing cross contamination

H₂O P&T

Reaction Sensors

- Built-in temperature and pressure sensors
- Up to 300C temperature and 200 bar pressure
- No need for a reference vessel
- No need for sensors plug-in
- Any sample combination in the same run
- Same temperature and pressure, regardless of sample type and weight

Run

System

Expected Benefits

Better digestion quality

Greater ease of use

Enhanced productivity

Better Digestion Quality

Higher temperature and pressure

Larger sample amount

Larger sample amount

15-position rack with 1,5 g of meat @ 220°C

Larger sample amount

5-position rack with 4g of dry food @ 260°C

Totally 20g of samples!

Digestion of difficult Samples

0,2 g Refractory samples @ 280°C for 1 hour

Sample amount

• Dry organic material

Rack	Amount (g)
5	> 3,0
15	≈ 1,0
22	< 0,25

Recovery Study

Apple leaves 0.5 g sample + 5 ml HNO, Analysis by ICP-MS

Olive leaves 0.5 g sample + 5 ml HNO, Analysis by ICP-MS

Element

P

к

Ca

Mg

Fe

Mn

Cu

Zn

Results in mg/kg

ETHOS On

1,400

13,100

23,950

2,043

88.5

26.0

HELPING

Element UltraWAVE **Ring Test** 2,678 2,600 P к 21,890 20,400 Ca 8,831 8,300 Mg 2,051 1,900 Fe 92.9 94.3 Mn 79.3 75.5 Cu 9.2 10.2 Zn 45,1 43.1

Results in mg/kg

1,530

12,602

21,589

1,917

88.2

28.2

Determined concentrations of metals and Se (mean \pm standard deviation, n=3) in certified reference materials.

Analyte	Certified values (n	Certified values (mg kg ⁻¹)			Determined values (mg kg ⁻¹)			
	Apple leaves	Bovine liver	Whole milk powder	Apple leaves	Bovine liver	Whole milk powder		
Alf	286±9	3ª	0.9 ^b	268.6 + 8.7 ^d	2.38 ± 0.19^{d}	1.2 ± 0.1 ^e		
Cu ^f	5.64 ± 0.24	160 ± 8	$0.46 \pm 0.08^{\circ}$	5.8 ± 0.1^{d}	163.5 ± 0.01^{d}	$0.56 \pm 0.10^{\circ}$		
Fe	83±5	184 ± 15	$1.8 \pm 1.1^{\circ}$	83.5 ± 9.9 ^d	162.1 ± 5.9 ^d	ND		
Mn ^g	54±3	10.5 ± 1.7	$0.17 \pm 0.05^{\circ}$	49.1 ± 3.0^{d}	9.6 ± 0.4^{d}	$0.20 \pm 0.01^{\circ}$		
Mog	0.094 ± 0.013	3.5 ± 0.3	$0.29 \pm 0.13^{\circ}$	$0.080 \pm 0.003^{\circ}$	$3.6 \pm 0.4^{\circ}$	$0.33 \pm 0.02^{\circ}$		
Rb	10.2 ± 1.5	13.7 ± 1.1	16 ^b	12.3 ± 0.1^{d}	17.1 ± 2.0^{d}	18.1 ± 1.1^{d}		
Se	0.050 ± 0.009	0.73 ± 0.06	$0.131 \pm 0.014^{\circ}$	ND	$0.75 \pm 0.02^{\circ}$	ND		
Sr	25 ± 2	0.136 ± 0.001	$4.35 \pm 0.50^{\circ}$	23.8 ± 2.8^{d}	0.22 ± 0.03^{d}	4.5 ± 0.2^{d}		
Zn	12.5 ± 0.3	127 ± 16	$28.0 \pm 3.1^{\circ}$	10.8 ± 0.1^{d}	97.0 ± 1.8^{d}	25.0 ± 2.1^{d}		

ND-not determined.

^a Noncertified values

^b Information concentrations.
 ^c Reference concentrations.

⁶ Reference concentrations.
 ⁶ Measurement performed by ICP OES.
 ⁶ Measurement performed by ICP-MS.
 ⁶ Y was used as internal standard.
 ⁸ Rh was used as internal standard.

J.A. Nóbrega et al. / Talanta 98 (2012) 272-276

Ease of Use

Less vessels handling

Mixed samples in the same run

One method for all samples

Vessels vs. Vials

Conventional microwave

One Method for All Samples

No Cross Contamination

Position	Sample	Result (ppb)
1	Blank	0.02
3	Blank	0.0032
5	Blank	0.001
7	Blank	< 0.001
9	Blank	< 0.001
11	Blank	< 0.001
13	Blank	<0.001
15	Blank	< 0.001

Uncleaned glass vial blanks digested with 110 ppm Hg solutions placed in adjacent vials, showing no evidence of cross contamination

Complete Recovery

Sample	Certified Hg	UltraWAVE Hg
Fish Protein DORM-3	$409\pm27\mu\text{g/kg}$	393 µg/kg
Polyethylene ERM-EC680	25.3 ± 1.0 mg/kg	24.9 mg/kg
an Joaquin Soil NIST2709	1.4 ± 0.08 mg/kg	1.4 mg/kg

Enhanced Productivity

Fast heating and cooling

High sample throughput

Disposable vials

Cooling

- Chamber cooled by closed-loop water cooling system
- UltraWAVE chamber directly connected to a water chiller
- Sensor to continuously monitor and control the temperature of the stainless steel chamber to prevent over-heating

Fast Heating and Cooling

Racks and vials

Rack Positions	Vials Material	Vials Volume (mL)
5	Glass (disposable) Quartz TFM	Up to 40
15	Glass (disposable) Quartz TFM	Up to 15

Disposable glass vials

- Eliminate the cleaning step
- Inexpensive
- Reduce overall sample preparation time

Blank comparison

Material	Cleaning before the run	UltraWAVE conditions
Glass	Not cleaned	4 ml of HNO3
Quartz	Soacked overnight in acid	at 220°C for 20'
TFM	bath	

- Better digestion quality
- Greater ease of use
- Enhance productivity

Microwave Protien Hydrolysis

ADVANTAGES of Microwave Protein Hydrolysis

Time savings

- The total hydrolysis time is much less than the normal analysis time with Milestone instrument, the complete procedure needs less than 45 minutes.
- A first method, which lasts 5 minutes, is used in the sample preparation of "sensitive" Amino Acids such as Met, Ser, Thr, Tyr, Phe and Arg, which are not thermically degradable.
- a second method of about 25 minutes allows the complete breaking of the aliphatic Amino Acids linkage.

ADVANTAGES of Microwave Protein Hydrolysis

Uniform work conditions

• All samples are processed under equivalent temperature conditions assuring a noticeable reproducibility in analytical data

Inert/Anaerobic environment

- The hydrolysis is performed under inert, anaerobic conditions in order to avoid oxidative degradation of amino acids.
- The Milestone system, thanks to the special VS-5 valve, offers the possibility to work under vacuum and with nitrogen, a complete answer to these needs.

ADVANTAGES of Microwave Protein Hydrolysis

No contamination

• The hydrolysis is carried out in quartz vials that can be directly used by the HPLC auto-sampler, thereby eliminating any possible contamination or analytical loss.

Control of Hydrolysis conditions

• The continuous monitoring of the temperature allows the operation in controlled and repeatable conditions.

ADVANTAGES of Microwave Protein Hydrolysis

Full safety

- The patented MDR technology has been in used for several years for applications much more dangerous than hydrolysis with diluted hydrochloric acid at 160°C.
- The system is guaranteed to be fully within the most common safety norms.

Easy operation

• All sample vials are loaded in a single rotor.

ADVANTAGES of Microwave Protein Hydrolysis

Complete Documentation

• The softWAVE software completely documents every hydrolysis parameter.

LESS THAN 45 MINUTES INSTEAD OF 24 TO 72 HOURS!

Structure and Nomenclature of amino acids

Structure and Nomenclature of amino acids

Name	Symbol (3 letter)	Symbol (1 letter)	Molecular Weight	Side chain (R group)
Aspartic Acid	Asp	D	133	CH2-COOH
Glutamic Acid	Glu	E	147	CH2-CH2-COOH
Alanine	Ala	A	89	CH3
Asparagine	Asn	N	132	CH2-CONH2
Cysteine	Cys	С	121	CH2-SH
Cystine	CySS		240	CH2-S-S-CH2-CH(NH2)-COOH
Glutamine	Gln	Q	146	CH2-CH2-CONH2
Glycine	Gly	G	75	н
Isoleucine	lle	1	131	CH(CH3)-CH2-CH3
Leucine	Leu	L	131	CH2-CH(CH3)(CH3)
Methionine	Met	M	149	CH2-CH2-S-CH3
Phenylalanine	Phe	F	165	CH2-C6H6
Serine	Ser	S	105	СН2ОН
Threonine	Thr	т	119	CHOH-CH3
Tryptophan	Trp	W	204	CH2-C8H5N
Tyrosine	Tyr	Y	181	CH2-C6H5OH
Valine	Val	V	117	CH(CH3)(CH3)
Arginine	Arg	R	174	CH2-CH2-CH2-NH-C(NH)-NH2
Histidine	His	н	154	CH2-C3H2N2
Lysine	Lya	к	146	CH2-CH2-CH2-CH2-NH2
Ornithine	Orn	0	132	CH2-CH2-CH2-NH2

Protein Hydrolysis

A protein is a great polypeptide, with more than 20 amino acids.

The analysis of the amino acid composition is carried out after the hydrolysis of the peptide linkages.

Protein Hydrolysis

- The hydrolysis with HCl is the most frequently used hydrolysis technique, both under reflux or at 110°C in sealed quartz tubes in which air is previously evacuated
- The hydrolysis time varies from 18 to 72 hours, depending on the type of peptides linkage.
- Hydrolysis under different conditions (and with differentiated reactive added) must be practised to obtain a complete screening of the amino acids present

Principle of operations

- Weight the samples directly in the 4ml quartz vials
- Wetted with a few drops of HCl 6N.
- The 330ml PTFE vessel is partially filled with about 30ml of HCl 6N.
- fitted in the PTFE vessel which is inserted in the safety shield.
- cover and complete with the temperature sensor, is placed on the vessel.
- closed under pressure by means of the torque wrench

Principle of operations

Principle of operations

Vapour phase hydrolysis

Principle of operations

Acid protein hydrolysis in vapour phase with Milestone instrument

Applications

* Sample preparation

- weigh the solid sample (0.15-1.5 mg) in 1.5 ml test tube
- wet the sample with 40 ul of HCl 6N
- place the samples in Teflon rotor containing 30 ml of HCl 6N
- insert in microwave oven
- make vacuum and let in Nitrogen

Applications

- * Program temperature and power of microwave oven
 - 10 minutes at 250W 160°C
 - 30 minutes at 500W 160°C
 - 15 minutes ventilation
- * Hydrolization treatment
 - filter the samples diluted with water
 - fill up to a final volume of 500 ul

Result

	Cas	sein	G	ue	Albu	imen	Yo	olk
Ratios	average	sd	average	sd	average	sd	average	sd
Glu/Asp	3,1	0,18	1,8	0,12	1,1	0,1	1,2	0,12
Leu/Ala	3	0,31	0,4	0,02	1,5	0,13	1,6	0,1
Val/Ala	2,2	0,22	0,3	0,02	1,2	0,11	1,1	0,11
Ala/Phe	0,6	0,07	3,9	0,25	0,9	0,14	1,2	0,25
Leu/IIe	1,7	0,04	2,3	0,04	1,6	0,05	1,6	0,26
Gly/lle	0,4	0,08	15,9	1,59	0,6	0,09	0,6	0,09
Ala/Gly	1,4	0,2	0,4	0,02	1,8	0,11	1,8	0,11
Ser/Ala	1,9	0,26	0,3	0,05	0,9	0,13	1,7	0,27
Ser/IIe	1,1	0,23	1,7	0,34	1	0,14	1,6	0,31

Microwave Vacuum Evaporation

Microwave Solvent Extraction

SFME Technology

Ferhat M.A., Meklati B.Y., Smadja J., Chemat F., Journal of Chromatography A, (2006) 1112: 121

Microwave Solvent Extraction

Microwave Fusion

Milestone Product Line

Digestion Clean Chemistry Extraction Ashing Synthesis Mercury Milestone's waves of innovations

Digestion

ETHOS One

START D

UltraWAVE

UltraCLAVE

Clean Chemistry

TraceCLEAN

DuoPUR

TWISTER Vessel Handling Module

NEOS

NEOS GR

o **NEOS** Solvent-Free Microwave Extraction

Microwave Extraction (SFME) of Essential Oil

o NEOS-GR

Rapid, Solvent-Free Extraction by Microwave Hydrodiffusion and Gravity (MHG)

MILESTONE HELPING CHEMISTS

PYRO XL Microwave Ashing System for Extra Large Sample Amounts

DMA-80 GAS ACCESSORIES

GAS KIT

SORBENT TRAPS

NEW SYNTHESIS KIT

Pack 1

Pack 2

Pack 3

Pack 4

